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augmentation in the exterior radius r0 (increasing the thick- 
ness of insulation) results in a reduction in the heat transfer 
rate in that segment of the cylinder. In the region where rc is 
larger than r,, an augmentation in thickness yields an 
increase in heat transfer-rate there. Similar results are shown 
in Fig. 3 in which surface radiation is accounted for. With 
surface radiation the critical radius is expressed as k/(h + 
4sFuTi) where in the present analysis E and F are taken as 
unity. In this case the critical radius follows a similar trend to 
that in Fig. 2 but consistently lower. For horizontal cylinders, 
the present results are in a slight disagreement with the results 
ofref. rll due to the difference in the relationshins used for the 
natural convection heat transfer coefficient. . 

Figure 4 shows the effect of thickness and opacity of a semi- 
transparent insulation on the heat transfer rate from a 
horizontal cylinder. A horizontal case is chosen in order to 
isolate these effects from effects of inclination. The high rate of 
heat transfer exhibited for a zero absorption coefficient, K = 
0, is due to an additional factor, namely radiation leaving the 
inner surface of insulation at ri with Ti directly to the exterior 
ambient in addition to the interior conduction and exterior 
convection. Increasing the opacity (increasing K and rO) shifts 
the rate of heat transfer towards the opaque case, and 
insulation in this case plays the role of a radiation shield. As 
the optical thickness (rOK) becomes very large, the insulation 
becomes essentially opaque and radiation becomes a surface 
phenomenon. This behavior can easily be verified by looking 
at the expression for the radiative heat flux q& in the 
optically thick limit with black boundaries and temperature 
jump boundary conditions given as [6] 
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The value of this expression progressively decreases as a, 
increases, and it approaches zero as a, approaches infinity, 
thus yielding equation (6). Of interest is the location of the 
maximum value of heat transfer of the curves as they represent 
the position of the critical radius. The opaque insulation with 
surface radiation exhibits the lowest value for rc. A reduction 
in the opacity shifts the peaks to the right and hence to a 
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larger value for rc. This shift can be interpreted as a result of 
providing an effective K, comprising radiation and con- 
duction, and hence decreasing the value of the internal 
resistance to heat transfer. Finally, it can be stressed that in 
insulating slender cylinders arbitrarily oriented, a need arises 
in having the thickness of insulation compatable with the 
orientation as well as with the opacity of insulation. It is 
important to point out also that the idea of a local critical 
radius can be extended to a circumferentially variable heat 
transfer coefficient for the case of a horizontal cylinder. 
Extreme caution, however, should be exercised if the con- 
vection coefficient is considered to vary both axially and 
circumferentially over the cylinder due to the scatter of the 
existing data and the disagreement among the relationships 
recommended in the literature for natural convection from 
inclined surfaces. 
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NOMENCLATURE 

areas of cross section of fluid channels; 
mean specific heat of the heat exchanger mass; 
specific heats of fluids at constant pressure; 

l), Cb(pO - l), constants of integration; 
- l), C,,& - l), constants of integration; 

heat transfer between the fluids per unit time 
per unit length per unit difference of 
temperature ; 
integer (1 - z); 
heat exchanger mass per unit length, cor- 
responding to the two channels; 
time ; 

u 2r 
I I 01 - 07, fluid flow velocities: _ _ 

X, distance along heat exchanger, 
(02) - (a&r). 

Greek symbols 
fx:, a;, complex roots of equation (8); 
B mr [(a2 + imw)/u, + (a,u,/a,)l; 
PLO, = W~Jw~,); 
PI> PZ? density of fluids; 
0, Za/period. 
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INTRODUCTION 

COUNTER current heat exchangers are commonly employed 
in solar hot water systems; the usual time independent 
analysis is not applicable because the inlet temperatures of 
hot water from the collector and cold water from the water 
supply are in general time dependent. This note presents an 
analysis of the heat exchanger when the inlet temperatures are 
periodic in nature. 

The basic equations determining the performance of a 
counter current heat exchanger are 

(M,c + A,p,c,i!$ + A,p,c,v’, 2 = h(T, - T,) (la) 

and 

(M,c + A,&? - A,P,w; z = h(T, - T,) 

(lb) 

where M, and M, are the masses per unit length of the heat 
exchanger, associated with the two channels of the heat 
exchanger. Since there is a temperature distribution within 
the mass of the heat exchanger, M, and M, cannot be 
assigned a priori values ; A4 L and M, have to be chosen for the 
best data fit so that M, + M, is equal to the total mass per 
unit length of the heat exchanger. 

The periodic boundary conditions are 

and 

T, = a,, + i ulmexp(imwt) at x = 0 (2a) 
m=* 

I 
T, = azo + 1 a,,exp(imwt) at x = L. (2b) 

m=, 

In general the overall heat transfer coefficient between the 
fluids, h, is a function of T, and T, ; we have however assumed 
it to be constant, implying small changes in T, and T,. 

The steady state periodic behaviour of Ti and T, may be 
expressed as 

, 

and 

T, = T,,(x) + C T,,(x)exp(imor) 
m=, 

(3a) 

1 

T, = T,,(x) + C T,,(x)exp(imot). 
m=l 

W) 

Substituting for T, and T, from equation (3) in equation (1) 
one obtains 

dT,m UI - = - T,, - 
(u, + imw) T 

dx I’, 
Im 

L’l 

and 

From equations (4a) and (4b) one obtains 

and 

dT,o ~2 ~‘1 dT,o 

dx-~‘~+ dx 

(44 

(5b) 

Integrating the above equations one obtains 

T2, - TiO = C,exp(x#) .(P,, - 1) 

and 

T20 = goT,o + Gbo - 1). 

Hence using equation (2a) one obtains 

T,, = C, exp(u,x) - CL 

and 

T,, = KC, exp(a,x) - CL 

where 

C, = (a20 - a&/[~, exp(c@) - l] 

and 

C0 = C%o -a,,~~ ewkJNiik exp(a&) 
From equations (5a) and (5b) one obtains 

11. (6d) 

% (T2m + amTIm) = F + a,: T,, c 2 1 ! 
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where 

(u, + imw) T 
Lln 

01 

= BmVZn + amTIm) (7) 

a, = - (8) 

Designating the two roots of the quadratic equation (8) by 
a: and a; and the corresponding values of fl, by /3: and 8, 
and integrating equation (7) one obtains 

T,, + a: T,, = C: exp(p:x)(a: - a,) 

and 

T,, + ai T,, = C, exp(/&x)(a,’ - a;). 

From the above set of equations one obtains 

and 

T,, = Cz exp(b:x) - C; exp(/I,x) (9a) 

T,, = cc: CL exp(&x) - a; Cz exp(fi,‘x). (9b) 

Using the boundary condition given by equation (3) 

C,+ = Cai,aZ exp(KL) + a,,]/ 

Cum’ exp(KL) - a; exp(KL)] (SC) 

C; = [oimG exp(KL) + a2,1/ 

[am’ eV(KU - G exp(KU] (9d) 

Thus the time and space dependence of the given tempera- 
ture of the fluid is given by equation (2) with T, 0, T,, given by 
equation (6) and T,,, T,, given by equation (9). The outlet 
temperatures are obtained by putting x = L in equation (3a) 
and x = 0 in equation (3b). It may be remembered that b, + 
ib, = A exp(i$) when b, is positive and b, + ib, = A 
exp[i(n + d)] when b, is negative, where A = I(A’ + B2)‘12 1, 

4~;;;;; 1 (b2/bl )and 14~ I < n/2 ; failure to keep to this causes 


